SBOA SCHOOL & JUNIOR COLLEGE, CHENNAI -101

MATHS HOLIDAY ASSIGNMENT

CLASS XII

J. Pa	oue that $f: N \to N$, defined. by $f(m) = m^2 + m + 1$ for all $m \in N$, is e-one but not onto.
2. Se	lue for x $ x-1 + tam x-1 = tam x $
3. F	Prove that $Sin^{-1}\left(\frac{12}{13}\right) + 00s^{-1}\left(\frac{4}{5}\right) + lam^{-1}\left(\frac{63}{16}\right) = \pi$ if $a \neq p$, $b \neq q$, $c \neq r$ and $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix}$
	find the value of p + q + r.c. p-a q-b + r.c. 1 1/2) = [1-sinz, x<1/2 is continuous
5)	It $f(\pi) = \int \frac{1-\sin x}{3\cos^2 x}$, $x < \frac{\pi}{2}$ is continuous $x = \frac{\pi}{2}$ $b(1-\sin x) = x > \frac{\pi}{2}$ $(\pi - 2x)^2$ the values of a and b at $\pi = \frac{\pi}{2}$ find the values of a and b
6)	If x = 3103t y = cost find dix
para (A)	Fxamine the foll-function for continuity and differentiability at $z=1$ and $z=3$ differentiability $z=1$ and $z=3$.

(0)	$\int \frac{d^n}{\cos e c x + \cos x}$	
u)	Evaluate by using properties of definite	
	Evaluate by using properties of definite integrals. (a) It x sinacosada (b) flog(Ha)da. Sinta + costa.	
12)	Alsing Integration find the area of the region enclosed between the circles	
13)	Alsing Integration find the area of the region enclosed between the circles at $y^2 = 4$ and $(x-2)^2 + y^2 = 4$. Using integration find the area of the triange ABC whose vertices are	
(1,)	A(4,1) $B(6,6)$ and $C(8,4)$.	
4)	Solve the differential equation (1+e ^{2x}) dy + (1+y ²) e ^x dx = 0, given that Solve the differential equation	
577-7-1	(x-y)ay = 3+2y	
16)	Solve. $(1+y^2) dx + (x-e^{-tamy}) dy = 0$ given that $y=0$, $x=0$.	
17)	Frond the image of the point p(2,-1,5) in the line == 112-21-82 + 2 (102-41-112)	
18)	Find the equation of the plane through the line of intersection of the planes: $3x-4y+5z=10$ and $2x+2y-3z=4$ and parallel to the line $x=2y=3z$. $\sim \times \sim$	